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Abstract. This paper presents a method for computing the inverse of a complex
n-block tridiagonal quasi-Hermitian matrix wsing an adequate mamber of partitions
of the complete matrix. This type of matrix is very usual in guantum mechanics
and, more specifically, in solid state physics {e.g. interfaces and super-lattices}, when
the tight-binding approximation is used. The efficiency of the method is analysed by
comparing the required CPU time and work-area with other techniques.

1, Introduction

The linear combination of atomic orbital methods [1, 2], especially within the tight-
binding approximation, is one of the most commonly used techniques in quantum me-
chanics for the analysis of the properties related to elementary excitations (electrons,
phonons, ete). Its application to the study of molecules and sclids gives Hamiltonian
operators which usually have, when written in an appropriate base, many null ele-
ments. In periodical systems such as crystal solids and super-lattices the Hamiltonian
may be represented as a quasi-Hermitian], block-tridiagonal matrix, in many cases
with a high dimension (e.g. [3]). The density of states as a function of the energy is
obtained from the trace of the Green function matrix G {1, 2] defined as

G = (El- H)™!

where E is a scalar and |, the identity matrix. The numerical techniques usually
used are not appropriate for solving this equation since they do not take into account
the particular structure of H (essentially the large number of null elements), which is
inefficient both in CPU time and memory requirements.

This article presents a method for computing the inverse of a complex n-block
tridiagonal quasi-Hermitian matrix which considers the structure of H using an ad-
equate mumber of partitions of the complete matrix. Its efficiency is analysed by
comparing its required CPU time with other techniques. It should be mentioned that
the first version of this method (which only computes the diagonal blocks of the inverse
matrix) has been used in several studies of the electronic properties of semiconductor
interfaces (e.g. see [4, 5]).

1 Permanent address: Departamento Fuentes Renovables y Uso Racional de la Energia Comisién
Nacional de Energia Atdmica Av. del Libertador 8250 1429 Buenos Aires, Argentina.

T Mi; e CPY9, My; = MJ‘I; ift # 5 and det My; 3£ 0, where M+ indicates the transposed and conjugate
matrix of M.
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2. Mathematical problem

Let M be the n-block tridiagonal quasi-Hermitian matrix

M11 M2+]'. 0 0 - [ ren 0
M21 M22 M:;{'z 0 PPN P P 0
0 M32 M33 M.Z:g
0 aan a2 Teu 0 Mﬂ—l,ﬂ—2 M ._1,7;—1 M:,n—l
0 0

nn-1 Mn,n
The problem consists of finding the matrix G such that M x G = |, where | is the

identity matrix (it should be mentioned that the different blocks of the matrix may
not necessarily be of equal dimension).

Partitioning the matrix G in the same way as M,

G G -+ Gy,
G — Gl21 G22 '21':
Gnl an T Grm

and the system M x G = | can be written as

MG, +MFGyy N
My Gy MGy +M5Gy, +
MayGay  +M33Gy  +MGGY, =0

Mn,n—lan—l,l +MnnGn1 =0

MGy, +MAG,,

=0
My Gy, +MyGy, +MFAG,, N =0
M3yGan +M3aGy,  +M5G,, =0

Mn,n—IGn—l,n +M G ='

nn-nn

where | is the identity matrix with an adequate number of dimensions.

The set of matrices G, ; is obtained by solving the matricial equation system and,
thus, the inverse of M is computed.

3. Problem resolution

The general resolution for 2 general n-block matrix M is very tedious and does not
contribute to the clarification, thus only the 4-block problem will be solved.
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Therefore, let M and G be such that
My M3

0 0 Gy G Gis

M21 M22 M:;; 0 GZl G22 G23

M33 MI3 GSI G32 G33
43 M-!-t G41 G42 Gﬁ!

or, equivalently,

M, Gy, + M:-eliGm =1
My Gy + MpyGoyy + MGy = 0
Mg, Gy + M33Gay + MEG, =0
MGy + MGy =0

My,Gyy+ MFiGyy = 0
M3, Gyp + MypGog + MFiGay = |
MyyGp + M3sGay + MEG,, = 0
M43'_332 + MGy =0
M Gra+ MGy =0
My Grg + MppGos + MG, = 0
M33Gag + M33Gag + MG s = |
My3Gas + MyyGy3 =0
My,Gyy + MG,y =0
MGy + MyyGoy + MG,y = 0
M3yGay + My3Gay + MGy =0
My3Gay + MyyGyy =1

Solving (1) and (2), and defining

and

X;=0

Xy = M‘E[M« - X41"1M43
Xy = Mg’z[Mss — X3 My,
X = Mgi[Mzz - XZ]_1M21

Y, =0

Yy = My [My, - Y7 M
Y3 = Myo[My, ~ Yy M
Yy = Myg{Mg, - Ys]-lM;:;

L= I e ]

(== ]

O -0

-0 0o
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the following expressions are obtained:

G =—[My - X7 M 3Gy
Gg1 = —[Myy — Xa] ' MzGy
Gy = —[Myy — X7 M, Gy
Gy =My - X, =Y
and
Gz = —[Myg — X) 7 M 45Gs,
Gy = —[Mg; — 3]_1M32G22
Gop = [Myy — X, - Yz]_l
Gy = —[My; — Yl]-lM;lGH'

G;3 and G, (for 1 € i € 4) are obtained in a similar way. The general rule for a
general n-block matrix M is immediately derived:

Gi=I[M;-X;-7]
Gij = CsGi-u
Gij = DiGS'+1,_f for i < j

fori>j

for 1 € i,§ € n, where

X, =0

Koo = My il Myy it nigs = Xocipt] " Mo _ig10s for1gign—1
Y, =0

Yig = My My - YOI M for2gign

Ci=—[M; — X7 M, ;_y forlgign—-1

D; = ~[M; -Y]'M} for2gign.

4, Computational solution

The computer code of this algorithm has been written in FORTRAN77, as a self-
consistent routine using a band storage mode for the matrix M (only the diagonal
and infra-diagonal blocks are stored); the required work-areaf is less than or equal to
2 x MDIM? x (3 + NB), where MDIM is the maximum block dimension and NB is the
number of blocks of the matrix M.

The alternative methods selected for comparison with this result are the LEQT2C
and MA23A routines from the IMSL and Harwell libraries respectively {the only ones
available in our computer centre which can accomplish the desired task), and a routine

t The storage area for the matrix M is not included.
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Table 1. Size of the required work-area, in units of the length of a complex num-
ber (typically, 8 byte in single precision), for three matrix dimensions. The block
dimensions used are: (a) 5 x 5; (§) 10 x 10.

Matrix dimension 30 50 100
MAZ23A 1050 2750 10500
This method 450(2)  650(a)-1600(4)  1150(a)-2600(5)

Table 2. cPU time involved, in seconds. The block dimensions used are: (2) 5 X 5;

{8) 10 x 10.

Matrix dimension 30 50 100

MA23A 0.54 1.88 7.70

NV 0.42 1.84 13.87

This method - 0.26(a) 0.58(2)-1.25(8) 1.82(a)-3.74(%)

called INV, which is the simplest version of the inversion algorithm. All of them use a
full storage mode for the matrix M.

The LEQT2C routine cannot compute the inverse matrix for the different M pro-
posed {the return code obtained indicates that the matrix is algorithmically singular).

The numerical values obtained by the algorithm presented in this article and by
the MA23A and INV routines coincide, at least, until the fourth significant digit. The
CPU times required in a BASF-768 computer and the size of required work-area by
the methods are given in tables 1 and 2.

5. Conclusions

Considering the resulis described in the preceding section, this method allows a more
efficient use of memory and computational time for the complex n-block tridiagonal
qguasi- Hermitian matrices. This method, with adequate modifications, can also be
applied to solve the systems GM = B, where M is a matrix as described, especially if
B is a diagonal matrix.

It is important fo notice that the calculations of the matrices X and Y are inde-
pendent, as is the case for the infra-diagonal and supra-diagonal blocks; therefore, this
method can be used in vectorial computers with the corresponding computer code.
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