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A method to compute the inverse of an n-block tridiagonal 
quasi-Hermitian matrix 

Elena M Godfrint 
Departamento de Fisiur de Is Materia CondedaUnivers idd  Authoma dcMadrid 
28049 Cantoblanm, Madrid, Spain 

Received 3 September 1990 

Abstract. This paper presents a method for computing the inverse of a complex 
n-block tridiagonal quasi-Hermitian matrix using an adequate number of partitions 
of the complete matrix. This type of matrix is very usual in quantum mechanics 
and, more specifically, in solid state physics (e.g. interfsces and super-lattices), when 
the tight-binding approximation is used. The efficiency of the method is analysed b y  
comparing the required CPU time and work-- with other teddques. 

1. Introduction 

The linear combination of atomic orbital methods [l, 21, especially within the tight- 
binding approximation, is one of the most commonly used techniques in quantum me- 
chanics for the analysis of the properties related to elementary excitations (electrons, 
phonons, etc). Its application to the study of molecules and solids gives Hamiltonian 
operators which usually have, when written in an appropriate base, many null ele- 
ments. In periodical systems such as crystal solids and super-lattices the Hamiltonian 
may be represented as a quasi-Hermitiant, block-tridiagonal matrix, in many cases 
with a high dimension (e.g. [3]). The density of states as a function of the energy is 
obtained from the trace of the Green function matrix G [I,  21 defined as 

G = (El - H)-' 
where E is a scalar and I, the identity matrix. The numerical techniques usually 
used are not appropriate for solving this equation since they do not take into account 
the particular structure of H (essentially the large number of null elements), which is 
inefficient both in CPU time and memory requirements. 

This article presents a method for computing the inverse of a complex n-block 
tridiagonal quasi-Hermitian matrix which considers the structure of H using an ad- 
equate number of partitions of the complete matrix. Its efficiency is analysed by 
comparing its required CPU time with other techniques. It should be mentioned that 
the first version of this method (which only computes the diagonal blocks of the inverse 
matrix) has been used in several studies of the electronic properties of semiconductor 
interfaces (e.g. see [4, 51). 

t Pnmanent addrrss: Departamento Fuentes Renwabhr y Us0 Racional de la Energfa Comisih 
Nacional de Energia At6mica AV. del Libertador 8'250 1429 Buenos Aires, Argentina. 
t M,, E CPxq, M,, = M,? if: # 3 anddet M,, # 0, where M+ indicates the transposedand conjugate 
matrix of M . 
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2. Mathematical problem 

Let M be the n-block tridiagonal quasi-Hermitian matrix 

... ... ... 
... ... ... ... ... 

. . . . . . . . .  t 

Ml1 MA 0 0 
M2, MA 0 1 1 .  

0 M,, M,, M& 

0 Mn-1,n-2 Mn-I+-1 Mnp-1 . . . . . . . . . . . .  0 

The problem consists of finding the matrix G such that M x G = I, where I is the 
identity matrix (it should be mentioned that the different blocks of the matrix may 
not necessarily be of equal dimension). 

Partitioning the matrix G in the same way as M, 

and the system M x G = I can be written as 

MllGl, +M:,GZl = I  
MZIGll +M22G21 = O  

M32G21 +M33G31 +M&G41 = O  

Mn,n-lGn-l,l +MnnGnl = 0 

M11Gln +MAG,, = O  
MnGtn +M,zG,n = O  

M32G2n = O  

Mn,n-lGn-l,n +MnnG,n = I 

The set of matrices Gi,i is obtained by solving the matricial equation system and, 

I 
where I is the identity matrix with an adequate number of dimensions. 

thus, the inverse of M is computed. 

3. Problem resolution 

The general resolution for a general n-block matrix M is very tedious and does not 
contribute to the clarification, thus only the 4-block problem will be solved. 
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Therefore, let M and G be such that 

Gll G12 G13 G14 1 0 0 0  

G31 '32 G33 G34 0 0 1 0  
G41 G42 Gm G 4 4  0 0 0 1  

G21 G22 G23 G24) = ( I 

O )  



and 

G4z = -[M44 - X~I-'M&~Z 

G32 = -[M33 - X31-1M3zGz2 

G,, = [MZ2 - X, - YJ-' 
GI2 = - [MI,  - YJ-'M&G22. 

Gi3 and Ci4 (for 1 < i < 4) are obtained in a similar way. The general rule for a 
general n-block matrix M is immediately derived: 

G.. = [M.. ii - X i  - K1-I 
G..  = CiGi-,j 

G.. = DiGi+lj 

I ,  

for i > j 
for i < j 

:I 

V 

for 1 < i , j  < n, where 

x, = o  
x,-, = M ~ + ~ + ~ , ~ - ~ [ M , - ~ + ~ , ~ - ~ + ~  - ~ n . + l l - l ~ n - i + l , n - G  
Yl = 0 

Yi+i= Mi+l,i[Mii -Y,I-'M,++l,i 

C; = -[&fii 

Di = -[Mii - K]-1A4&1,G 

for 1 4 i 6 n - 1 

for 2 < i < n 

for 1 < i < n - 1 

for 2 < i < n. 

4. Computational solution 

The computer code of this algorithm has been written in FORTRAN77, as a self- 
consistent routine using a band storage mode for the matrix M (only the diagonal 
and infra-diagonal blocks are stored); the required work-areat is less than or equal to 
2 x M D M 2  x (3 + NB), where MDJM is the maximum block dimension and NB is the 
number of blocks of the matrix M. 

The alternative methods selected for comparison with this result are the LEQTzC 
and MA23A routines from the IMSL and Rarwell libraries respectively (the only ones 
available in our computer centre which can accomplish the desired task), and a routine 

t The storage m a  for Lhe maLrix 11 is not included. 
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Table 1. Size of the required work--a, in units of the lag& of a complex rmm- 
ber ( typidy,  8 byte in single precision), for three matrix dimensions. The blodr 
dimmaiorr used M. (a) 5 x 5; ( 6 )  10 x 10. 

Matrix dimension 30 50 100 

M h l S A  1050 2750 10500 
This method 450(a) 6SO(a)-I&%J(b) IlSO(a)-Zsw(6) 

Table 2. CPU time involved, in seconds. The block &-OM used are: (a) 5 x 5; 
( b )  10 x 10. 

Matrixdimmion 30 50 1M) 

M h 2 S h  0.54 1.88 7.70 
INV 0.42 1.84 13.87 
This method 0.26(.) 0.58(o)-1.25(6) 1.82(.)3.74(6) 

called INV, which is the simplest version of the inversion algorithm. All of them use a 
full storage mode for the matrix M. 

The L E g n c  routine cannot compute the inverse matrix for the different M pr- 
posed (the return code obtained indicates that the matrix is algorithmically singular). 

The numerical values obtained by the algorithm presented in this article and by 
the MA23A and INV routines coincide, at least, until the fourth significant digit. The 
CPU t i "  required in a BASF-768 computer and the size of required work-area by 
the methods are given in tables 1 and 2. 

5. Conclusions 

Considering the results described in the preceding section, this method allows a more 
a c i e n t  use of memory and computational time for the complex n-block tridiagonal 
quasi-Hermitian matrices. This method, with adequate modifications, can also be 
applied to solve the systems GM = 8, where M is a matrix as described, especially if 
B is a diagonal matrix. 

It is important to notice that the calculations of the matrices X and Y are inde- 
pendent, as is the case for the infra-diagonal and supra-diagonal blocks; therefore, this 
method can be used in vectorial computers with the corresponding computer code. 
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